Differentiation of Mouse Embryonic Stem Cells into Endoderm without Embryoid Body Formation

نویسندگان

  • Peter T. W. Kim
  • Brad G. Hoffman
  • Annette Plesner
  • Cheryl D. Helgason
  • C. Bruce Verchere
  • Stephen W. Chung
  • Garth L. Warnock
  • Alice L. F. Mui
  • Christopher J. Ong
چکیده

Pluripotent embryonic stem cells hold a great promise as an unlimited source of tissue for treatment of chronic diseases such as Type 1 diabetes. Herein, we describe a protocol using all-trans-retinoic acid, basic fibroblast growth factor and dibutyryl cAMP (DBcAMP) in the absence of embryoid body formation, for differentiation of murine embryonic stem cells into definitive endoderm that may serve as pancreatic precursors. The produced cells were analyzed by quantitative PCR, immunohistochemistry and static insulin release assay for markers of trilaminar embryo, and pancreas. Differentiated cells displayed increased Sox17 and Foxa2 expression consistent with definitive endoderm production. There was minimal production of Sox7, an extraembryonic endoderm marker, and Oct4, a marker of pluripotency. There was minimal mesoderm or neuroectoderm formation based on expression levels of the markers brachyury and Sox1, respectively. Various assays revealed that the cell clusters generated by this protocol express markers of the pancreatic lineage including insulin I, insulin II, C-peptide, PDX-1, carboxypeptidase E, pan-cytokeratin, amylase, glucagon, PAX6, Ngn3 and Nkx6.1. This protocol using all-trans-retinoic acid, DBcAMP, in the absence of embryoid bodies, generated cells that have features of definitive endoderm that may serve as pancreatic endocrine precursors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differentiation of Mouse Embryonic Stem Cell into Insulin-Secreting Cell

Purpose: Differentiation of mouse embryonic stem cells into Insulin secreting endocrine cells. Materials and Methods: In this study, Royan B1 mouse embryonic stem cell (derived from C57BL/6 mouse) were used. In directed differentiation method, embryonicstem cells after embryoid bodies formation were differentiated into insulin secreting cells. Nestin positive cells were obtained after culture ...

متن کامل

Pancreatic Differentiation of Sox 17 Knock-in Mouse Embryonic Stem Cells in Vitro

The way to overcome current limitations in the generation of glucose-responsive insulin-producing cells is selective enrichment of the number of definitive endoderm (DE) progenitor cells. Sox17 is the marker of mesendoderm and definitive endoderm. The aim of the present research was to study the potential of Sox17 knock-in CGR8 mouse embryonic stem (ES) cells to differentiate into insulin produ...

متن کامل

Effect of Different Concentrations of Forskolin Along with Mature Granulosa Cell Co-Culturing on Mouse Embryonic Stem Cell Differentiation into Germ-Like Cells

Background: Germ cell development processes are influenced by soluble factors and intercellular signaling events between them and the neighboring somatic cells. More insight into the molecular biology of the germ cell development from embryonic stem (ES) cells and investigation of appropriate factors, specifically those targeting differentiation process, is of great importance. In this study, w...

متن کامل

Targeted mutagenesis of the transcription factor GATA-4 gene in mouse embryonic stem cells disrupts visceral endoderm differentiation in vitro.

Transcription factor GATA-4 belongs to a family of zinc finger proteins involved in lineage determination. GATA-4 is first expressed in yolk sac endoderm of the developing mouse and later in cardiac tissue, gut epithelium and gonads. To delineate the role of this transcription factor in differentiation and early development, we studied embryoid bodies derived from mouse embryonic stem (ES) cell...

متن کامل

Comparison of Germ Cell Gene Expressions in Spontaneous Monolayer versus Embryoid Body Differentiation of Mouse Embryonic Stem Cells toward Germ Cells

Objective Genetic and morphologic similarities between mouse embryonic stem cell (ESCs) and Primordial Germ Cell (PGCs) make it difficult to distinguish the two cell types in in vitro differentiation. Using the expression of specific markers of germ cells that are not expressed or expressed at low levels in ESCs, can help recognizing in vitro differentiated cells MaterialsAndMethods In this stu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2010